medusa.recon.flame.decoders
#
Decoder-modules for FLAME-based reconstruction models.
See ./deca/license.md for conditions for use.
Module Contents#
- class medusa.recon.flame.decoders.FlameShape(n_shape=300, n_expr=100, parameters=None, device=DEVICE, **init_parameters)[source]#
Generates a FLAME-based mesh (shape only) from 3DMM parameters.
- class medusa.recon.flame.decoders.FlameLandmark(lm_type='68', lm_dim='2d', device=DEVICE)[source]#
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- class medusa.recon.flame.decoders.FlameTex(model_path=None, n_tex=50)[source]#
FLAME texture:
TimoBolkart/TF_FLAME FLAME texture converted from BFM: TimoBolkart/BFM_to_FLAME