medusa.containers.results#
A very hack implementation of a container to store results from processing multiple batches of images.
Module Contents#
- class medusa.containers.results.BatchResults(n_img=0, device=DEVICE, **kwargs)[source]#
- A container to store and process results from processing multiple batches of inputs/images. - Parameters:
- n_img (int) – Number of images processed thus far 
- device (str) – Device to store/process the data on (either ‘cpu’ or ‘cuda’) 
- **kwargs – Other data that will be set as attributes 
 
 - add(**kwargs)[source]#
- Add data to the container. - Parameters:
- **kwargs – Any data that will be added to the 
 
 - concat(n_max=None)[source]#
- Concatenate results form multiple batches. - Parameters:
- n_max (None, int) – Whether to only return - n_maxobservations per attribute (ignored if- None)
 
 - sort_faces(attr='lms', dist_threshold=250)[source]#
- ‘Sorts’ faces using the - medusa.tracking.sort_facesfunction (and performs some checks of the data).- Parameters:
- attr (str) – Name of the attribute that needs to be used to sort the faces (e.g., ‘lms’ or ‘v’) 
- dist_threshold (int, float) – Euclidean distance between two sets of landmarks/vertices that we consider comes from two different faces (e.g., if - d(lms1, lms2) >= dist_treshold, then we conclude that face 1 (- lms1) is a different from face 2 (- lms2)
 
- Returns:
- face_idx – The face IDs associate with each detection 
- Return type:
- torch.tensor 
 
 - visualize(f_out, imgs, video=False, show_cropped=False, face_id=None, fps=24, crop_size=(224, 224), template=None, **kwargs)[source]#
- Visualizes the detection/cropping results aggregated by the BatchResults object. - Parameters:
- f_out (str, Path) – Path of output image/video 
- imgs (torch.tensor) – A tensor with the original (uncropped images); can be a batch of images or a single image 
- video (bool) – Whether to output a video or image (grid) 
- show_cropped (bool) – Whether to visualize the cropped image or the original image 
- face_id (None) – Should be None (used in recursive call) 
- fps (int) – Frames per second of video (only relevant if - video=True)
- crop_size (tuple[int]) – Size of cropped images 
- template (torch.tensor) – Template used in aligment (optional) 
 
 
 
